Paper 1, Section II, B

Methods | Part IB, 2013

(i) Let f(x)=x,0<xπf(x)=x, 0<x \leqslant \pi. Obtain the Fourier sine series and sketch the odd and even periodic extensions of f(x)f(x) over the interval 2πx2π-2 \pi \leqslant x \leqslant 2 \pi. Deduce that

n=11n2=π26\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}

(ii) Consider the eigenvalue problem

Ly=d2ydx22dydx=λy,λR\mathcal{L} y=-\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=\lambda y, \quad \lambda \in \mathbb{R}

with boundary conditions y(0)=y(π)=0y(0)=y(\pi)=0. Find the eigenvalues and corresponding eigenfunctions. Recast L\mathcal{L} in Sturm-Liouville form and give the orthogonality condition for the eigenfunctions. Using the Fourier sine series obtained in part (i), or otherwise, and assuming completeness of the eigenfunctions, find a series for yy that satisfies

Ly=xex\mathcal{L} y=x e^{-x}

for the given boundary conditions.

Typos? Please submit corrections to this page on GitHub.