Paper 4, Section I, H

Markov Chains | Part IB, 2013

Suppose PP is the transition matrix of an irreducible recurrent Markov chain with state space II. Show that if xx is an invariant measure and xk>0x_{k}>0 for some kIk \in I, then xj>0x_{j}>0 for all jIj \in I.

Let

γjk=pkj+t=1i1k,,itkpkitpitit1pi1j\gamma_{j}^{k}=p_{k j}+\sum_{t=1}^{\infty} \sum_{i_{1} \neq k, \ldots, i_{t} \neq k} p_{k i_{t}} p_{i_{t} i_{t-1}} \cdots p_{i_{1} j}

Give a meaning to γjk\gamma_{j}^{k} and explain why γkk=1\gamma_{k}^{k}=1.

Suppose xx is an invariant measure with xk=1x_{k}=1. Prove that xjγjkx_{j} \geqslant \gamma_{j}^{k} for all jj.

Typos? Please submit corrections to this page on GitHub.