Paper 2, Section I, 4G

Metric and Topological Spaces | Part IB, 2011

(i) Let t>0t>0. For x=(x,y),x=(x,y)R2\mathbf{x}=(x, y), \mathbf{x}^{\prime}=\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}, let

d(x,x)=xx+tyy,δ(x,x)=(xx)2+(yy)2\begin{gathered} d\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left|x^{\prime}-x\right|+t\left|y^{\prime}-y\right|, \\ \delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sqrt{\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}} \end{gathered}

( δ\delta is the usual Euclidean metric on R2\mathbb{R}^{2}.) Show that dd is a metric on R2\mathbb{R}^{2} and that the two metrics d,δd, \delta give rise to the same topology on R2\mathbb{R}^{2}.

(ii) Give an example of a topology on R2\mathbb{R}^{2}, different from the one in (i), whose induced topology (subspace topology) on the xx-axis is the usual topology (the one defined by the metric d(x,x)=xx)\left.d\left(x, x^{\prime}\right)=\left|x^{\prime}-x\right|\right). Justify your answer.

Typos? Please submit corrections to this page on GitHub.