Paper 3, Section II, C

Electromagnetism | Part IB, 2011

Show, using the vacuum Maxwell equations, that for any volume VV with surface SS,

ddtV(ϵ02EE+12μ0BB)dV=S(1μ0E×B)dS\frac{d}{d t} \int_{V}\left(\frac{\epsilon_{0}}{2} \mathbf{E} \cdot \mathbf{E}+\frac{1}{2 \mu_{0}} \mathbf{B} \cdot \mathbf{B}\right) d V=\int_{S}\left(-\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}\right) \cdot \mathbf{d} \mathbf{S}

What is the interpretation of this equation?

A uniform straight wire, with a circular cross section of radius rr, has conductivity σ\sigma and carries a current II. Calculate 1μ0E×B\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B} at the surface of the wire, and hence find the flux of 1μ0E×B\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B} into unit length of the wire. Relate your result to the resistance of the wire, and the rate of energy dissipation.

Typos? Please submit corrections to this page on GitHub.