Paper 2, Section II, A

Complex Analysis or Complex Methods | Part IB, 2011

(i) Let CC be an anticlockwise contour defined by a square with vertices at z=x+iyz=x+i y where

x=y=(2N+12)π|x|=|y|=\left(2 N+\frac{1}{2}\right) \pi

for large integer NN. Let

I=Cπcotz(z+πa)4dzI=\oint_{C} \frac{\pi \cot z}{(z+\pi a)^{4}} d z

Assuming that I0I \rightarrow 0 as NN \rightarrow \infty, prove that, if aa is not an integer, then

n=1(n+a)4=π43sin2(πa)(3sin2(πa)2).\sum_{n=-\infty}^{\infty} \frac{1}{(n+a)^{4}}=\frac{\pi^{4}}{3 \sin ^{2}(\pi a)}\left(\frac{3}{\sin ^{2}(\pi a)}-2\right) .

(ii) Deduce the value of

n=1(n+12)4\sum_{n=-\infty}^{\infty} \frac{1}{\left(n+\frac{1}{2}\right)^{4}}

(iii) Briefly justify the assumption that I0I \rightarrow 0 as NN \rightarrow \infty.

[Hint: For part (iii) it is sufficient to consider, at most, one vertical side of the square and one horizontal side and to use a symmetry argument for the remaining sides.]

Typos? Please submit corrections to this page on GitHub.