Paper 2, Section II, D

Quantum Mechanics | Part IB, 2010

A particle of mass mm moves in a one-dimensional potential defined by

V(x)={ for x<00 for 0xaV0 for a<xV(x)= \begin{cases}\infty & \text { for } x<0 \\ 0 & \text { for } 0 \leqslant x \leqslant a \\ V_{0} & \text { for } a<x\end{cases}

where aa and V0V_{0} are positive constants. Defining c=[2m(V0E)]1/2/c=\left[2 m\left(V_{0}-E\right)\right]^{1 / 2} / \hbar and k=k= (2mE)1/2/(2 m E)^{1 / 2} / \hbar, show that for any allowed positive value EE of the energy with E<V0E<V_{0} then

c+kcotka=0c+k \cot k a=0

Find the minimum value of V0V_{0} for this equation to have a solution.

Find the normalized wave function for the particle. Write down an expression for the expectation value of xx in terms of two integrals, which you need not evaluate. Given that

x=12k(katanka),\langle x\rangle=\frac{1}{2 k}(k a-\tan k a),

discuss briefly the possibility of x\langle x\rangle being greater than aa. [Hint: consider the graph of - ka cot kak a against ka.]k a .]

Typos? Please submit corrections to this page on GitHub.