Paper 1, Section II, 18C

Numerical Analysis | Part IB, 2010

Let

f,g=ex2f(x)g(x)dx\langle f, g\rangle=\int_{-\infty}^{\infty} e^{-x^{2}} f(x) g(x) d x

be an inner product. The Hermite polynomials Hn(x),n=0,1,2,H_{n}(x), n=0,1,2, \ldots are polynomials in xx of degree nn with leading term 2nxn2^{n} x^{n} which are orthogonal with respect to the inner product, with

Hm,Hn={γm>0 if m=n0 otherwise \left\langle H_{m}, H_{n}\right\rangle= \begin{cases}\gamma_{m}>0 & \text { if } m=n \\ 0 & \text { otherwise }\end{cases}

and H0(x)=1H_{0}(x)=1. Find a three-term recurrence relation which is satisfied by Hn(x)H_{n}(x) and γn\gamma_{n} for n=1,2,3n=1,2,3. [You may assume without proof that

1,1=π,x,x=12π,x2,x2=34π,x3,x3=158π.]\left.\langle 1,1\rangle=\sqrt{\pi}, \quad\langle x, x\rangle=\frac{1}{2} \sqrt{\pi}, \quad\left\langle x^{2}, x^{2}\right\rangle=\frac{3}{4} \sqrt{\pi}, \quad\left\langle x^{3}, x^{3}\right\rangle=\frac{15}{8} \sqrt{\pi} .\right]

Next let x0,x1,,xkx_{0}, x_{1}, \ldots, x_{k} be the k+1k+1 distinct zeros of Hk+1(x)H_{k+1}(x) and for i,j=0,1,,ki, j=0,1, \ldots, k define the Lagrangian polynomials

Li(x)=jixxjxixjL_{i}(x)=\prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}}

associated with these points. Prove that Li,Lj=0\left\langle L_{i}, L_{j}\right\rangle=0 if iji \neq j.

Typos? Please submit corrections to this page on GitHub.