Paper 4, Section II, B

Methods | Part IB, 2010

Defining the function Gf3(r;r0)=1/(4πrr0)G_{f_{3}}\left(\mathbf{r} ; \mathbf{r}_{0}\right)=-1 /\left(4 \pi\left|\mathbf{r}-\mathbf{r}_{0}\right|\right), prove Green's third identity for functions u(r)u(\mathbf{r}) satisfying Laplace's equation in a volume VV with surface SS, namely

u(r0)=S(uGf3nunGf3)dSu\left(\mathbf{r}_{0}\right)=\int_{S}\left(u \frac{\partial G_{f_{3}}}{\partial n}-\frac{\partial u}{\partial n} G_{f_{3}}\right) d S

A solution is sought to the Neumann problem for 2u=0\nabla^{2} u=0 in the half plane z>0z>0 :

u=O(xa),ur=O(xa1) as x,uz=p(x,y) on z=0u=O\left(|\mathbf{x}|^{-a}\right), \quad \frac{\partial u}{\partial r}=O\left(|\mathbf{x}|^{-a-1}\right) \text { as }|\mathbf{x}| \rightarrow \infty, \quad \frac{\partial u}{\partial z}=p(x, y) \text { on } z=0

where a>0a>0. It is assumed that p(x,y)dxdy=0\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) d x d y=0. Explain why this condition is necessary.

Construct an appropriate Green's function G(r;r0)G\left(\mathbf{r} ; \mathbf{r}_{0}\right) satisfying G/z=0\partial G / \partial z=0 at z=0z=0, using the method of images or otherwise. Hence find the solution in the form

u(x0,y0,z0)=p(x,y)f(xx0,yy0,z0)dxdyu\left(x_{0}, y_{0}, z_{0}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) f\left(x-x_{0}, y-y_{0}, z_{0}\right) d x d y

where ff is to be determined.

Now let

p(x,y)={xx,y<a0 otherwise p(x, y)= \begin{cases}x & |x|,|y|<a \\ 0 & \text { otherwise }\end{cases}

By expanding ff in inverse powers of z0z_{0}, show that

u2a4x03πz03 as z0.u \rightarrow \frac{-2 a^{4} x_{0}}{3 \pi z_{0}^{3}} \quad \text { as } \quad z_{0} \rightarrow \infty .

Typos? Please submit corrections to this page on GitHub.