Paper 2, Section II, C

Electromagnetism | Part IB, 2010

A steady current I2I_{2} flows around a loop C2\mathcal{C}_{2} of a perfectly conducting narrow wire. Assuming that the gauge condition A=0\nabla \cdot \mathbf{A}=0 holds, the vector potential at points away from the loop may be taken to be

A(r)=μ0I24πC2dr2rr2\mathbf{A}(\mathbf{r})=\frac{\mu_{0} I_{2}}{4 \pi} \oint_{\mathcal{C}_{2}} \frac{d \mathbf{r}_{2}}{\left|\mathbf{r}-\mathbf{r}_{2}\right|}

First verify that the gauge condition is satisfied here. Then obtain the Biot-Savart formula for the magnetic field

B(r)=μ0I24πC2dr2×(rr2)rr23\mathbf{B}(\mathbf{r})=\frac{\mu_{0} I_{2}}{4 \pi} \oint_{\mathcal{C}_{2}} \frac{d \mathbf{r}_{2} \times\left(\mathbf{r}-\mathbf{r}_{2}\right)}{\left|\mathbf{r}-\mathbf{r}_{2}\right|^{3}}

Next suppose there is a similar but separate loop C1\mathcal{C}_{1} with current I1I_{1}. Show that the magnetic force exerted on loop C1\mathcal{C}_{1} by loop C2\mathcal{C}_{2} is

F12=μ0I1I24πC1C2dr1×(dr2×r1r2r1r23)\mathbf{F}_{12}=\frac{\mu_{0} I_{1} I_{2}}{4 \pi} \oint_{\mathcal{C}_{1}} \oint_{\mathcal{C}_{2}} d \mathbf{r}_{1} \times\left(d \mathbf{r}_{2} \times \frac{\mathbf{r}_{1}-\mathbf{r}_{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|^{3}}\right)

Is this consistent with Newton's third law? Justify your answer.

Typos? Please submit corrections to this page on GitHub.