Paper 1, Section II, A

Complex Analysis or Complex Methods | Part IB, 2010

Calculate the following real integrals by using contour integration. Justify your steps carefully.

(a)

I1=0xsinxx2+a2dx,a>0I_{1}=\int_{0}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} d x, \quad a>0

(b)

I2=0x1/2logx1+x2dxI_{2}=\int_{0}^{\infty} \frac{x^{1 / 2} \log x}{1+x^{2}} d x

Typos? Please submit corrections to this page on GitHub.