Paper 2, Section I, G

Analysis II | Part IB, 2010

Let c>1c>1 be a real number, and let FcF_{c} be the space of sequences a=(a1,a2,)\mathbf{a}=\left(a_{1}, a_{2}, \ldots\right) of real numbers aia_{i} with r=1crar\sum_{r=1}^{\infty} c^{-r}\left|a_{r}\right| convergent. Show that ac=r=1crar\|\mathbf{a}\|_{c}=\sum_{r=1}^{\infty} c^{-r}\left|a_{r}\right| defines a norm on FcF_{c}.

Let FF denote the space of sequences a with ai\left|a_{i}\right| bounded; show that FFcF \subset F_{c}. If c>cc^{\prime}>c, show that the norms on FF given by restricting to FF the norms c\|\cdot\|_{c} on FcF_{c} and c\|\cdot\|_{c^{\prime}} on FcF_{c^{\prime}} are not Lipschitz equivalent.

By considering sequences of the form a(n)=(a,a2,,an,0,0,)\mathbf{a}^{(n)}=\left(a, a^{2}, \ldots, a^{n}, 0,0, \ldots\right) in FF, for aa an appropriate real number, or otherwise, show that FF (equipped with the norm .c\|.\|_{c} ) is not complete.

Typos? Please submit corrections to this page on GitHub.