2.II.20C

Markov Chains | Part IB, 2007

Consider a Markov chain with state space S={0,1,2,}S=\{0,1,2, \ldots\} and transition matrix given by

Pi,j={qpji+1 for i1 and ji1qpj for i=0 and j0P_{i, j}= \begin{cases}q p^{j-i+1} & \text { for } i \geqslant 1 \text { and } j \geqslant i-1 \\ q p^{j} & \text { for } i=0 \text { and } j \geqslant 0\end{cases}

and Pi,j=0P_{i, j}=0 otherwise, where 0<p=1q<10<p=1-q<1.

For each value of p,0<p<1p, 0<p<1, determine whether the chain is transient, null recurrent or positive recurrent, and in the last case find the invariant distribution.

Typos? Please submit corrections to this page on GitHub.