2.II.17E

Electromagnetism | Part IB, 2007

If SS is a fixed surface enclosing a volume VV, use Maxwell's equations to show that

ddtV(12ϵ0E2+12μ0B2)dV+SPndS=VjEdV\frac{d}{d t} \int_{V}\left(\frac{1}{2} \epsilon_{0} E^{2}+\frac{1}{2 \mu_{0}} B^{2}\right) d V+\int_{S} \mathbf{P} \cdot \mathbf{n} d S=-\int_{V} \mathbf{j} \cdot \mathbf{E} d V

where P=(E×B)/μ0\mathbf{P}=(\mathbf{E} \times \mathbf{B}) / \mu_{0}. Give a physical interpretation of each term in this equation.

Show that Maxwell's equations for a vacuum permit plane wave solutions with E=E0(0,1,0)cos(kxωt)\mathbf{E}=E_{0}(0,1,0) \cos (k x-\omega t) with E0,kE_{0}, k and ω\omega constants, and determine the relationship between kk and ω\omega.

Find also the corresponding B(x,t)\mathbf{B}(\mathbf{x}, t) and hence the time average <P><\mathbf{P}>. What does <P><\mathbf{P}> represent in this case?

Typos? Please submit corrections to this page on GitHub.