3.I.7B

Quantum Mechanics | Part IB, 2007

The quantum mechanical harmonic oscillator has Hamiltonian

H=12mp2+12mω2x2H=\frac{1}{2 m} p^{2}+\frac{1}{2} m \omega^{2} x^{2}

and is in a stationary state of energy <H>=E<H>=E. Show that

E12m(Δp)2+12mω2(Δx)2,E \geqslant \frac{1}{2 m}(\Delta p)^{2}+\frac{1}{2} m \omega^{2}(\Delta x)^{2},

where (Δp)2=p2p2(\Delta p)^{2}=\left\langle p^{2}\right\rangle-\langle p\rangle^{2} and (Δx)2=x2x2(\Delta x)^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}. Use the Heisenberg Uncertainty Principle to show that

E12ωE \geqslant \frac{1}{2} \hbar \omega

Typos? Please submit corrections to this page on GitHub.