3.I.6E3 . \mathrm{I} . 6 \mathrm{E} \quad

Methods | Part IB, 2007

Describe the method of Lagrange multipliers for finding extrema of a function f(x,y,z)f(x, y, z) subject to the constraint that g(x,y,z)=cg(x, y, z)=c.

Illustrate the method by finding the maximum and minimum values of xyx y for points (x,y,z)(x, y, z) lying on the ellipsoid

x2a2+y2b2+z2c2=1\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1

with a,ba, b and cc all positive.

Typos? Please submit corrections to this page on GitHub.