Mathematics Tripos Papers

  • Part IA
  • Part IB
  • Part II
  • FAQ

2.II.14F

Complex Analysis or Complex Methods | Part IB, 2007

Let Ω\OmegaΩ be the half-strip in the complex plane,

Ω={z=x+iy∈C:−π2<x<π2,y>0}\Omega=\left\{z=x+i y \in \mathbb{C}:-\frac{\pi}{2}<x<\frac{\pi}{2}, \quad y>0\right\}Ω={z=x+iy∈C:−2π​<x<2π​,y>0}

Find a conformal mapping that maps Ω\OmegaΩ onto the unit disc.

Typos? Please submit corrections to this page on GitHub.