1.II.13F

Complex Analysis or Complex Methods | Part IB, 2007

By integrating round the contour CRC_{R}, which is the boundary of the domain

DR={z=reiθ:0<r<R,0<θ<π4}D_{R}=\left\{z=r e^{i \theta}: 0<r<R, \quad 0<\theta<\frac{\pi}{4}\right\}

evaluate each of the integrals

0sinx2dx,0cosx2dx\int_{0}^{\infty} \sin x^{2} d x, \quad \int_{0}^{\infty} \cos x^{2} d x

[You may use the relations 0er2dr=π2\int_{0}^{\infty} e^{-r^{2}} d r=\frac{\sqrt{\pi}}{2} and sint2πt\sin t \geq \frac{2}{\pi} t for 0tπ2]\left.0 \leq t \leq \frac{\pi}{2} \cdot\right]

Typos? Please submit corrections to this page on GitHub.