1.II.11H

Analysis II | Part IB, 2007

Define what it means for a function f:RaRbf: \mathbb{R}^{a} \rightarrow \mathbb{R}^{b} to be differentiable at a point pRap \in \mathbb{R}^{a} with derivative a linear map Dfp.\left.D f\right|_{p} .

State the Chain Rule for differentiable maps f:RaRbf: \mathbb{R}^{a} \rightarrow \mathbb{R}^{b} and g:RbRcg: \mathbb{R}^{b} \rightarrow \mathbb{R}^{c}. Prove the Chain Rule.

Let x\|x\| denote the standard Euclidean norm of xRax \in \mathbb{R}^{a}. Find the partial derivatives fxi\frac{\partial f}{\partial x_{i}} of the function f(x)=xf(x)=\|x\| where they exist.

Typos? Please submit corrections to this page on GitHub.