4.II.12A
Write down the Riemannian metric for the upper half-plane model of the hyperbolic plane. Describe, without proof, the group of isometries of and the hyperbolic lines (i.e. the geodesics) on .
Show that for any two hyperbolic lines , there is an isometry of which maps onto .
Suppose that is a composition of two reflections in hyperbolic lines which are ultraparallel (i.e. do not meet either in the hyperbolic plane or at its boundary). Show that cannot be an element of finite order in the group of isometries of .
[Existence of a common perpendicular to two ultraparallel hyperbolic lines may be assumed. You might like to choose carefully which hyperbolic line to consider as a common perpendicular.]
Typos? Please submit corrections to this page on GitHub.