4.I.8D

Numerical Analysis | Part IB, 2006

(a) Given the data

\begin{tabular}{c|r|r|r|r} xix_{i} & 1-1 & 0 & 1 & 3 \ \hlinef(xi)f\left(x_{i}\right) & 7-7 & 3-3 & 3-3 & 9 \end{tabular}

find the interpolating cubic polynomial pP3p \in \mathcal{P}_{3} in the Newton form, and transform it to the power form.

(b) We add to the data one more value f(xi)f\left(x_{i}\right) at xi=2x_{i}=2. Find the power form of the interpolating quartic polynomial qP4q \in \mathcal{P}_{4} to the extended data

\begin{tabular}{c|c|r|r|r|r} xix_{i} & 1-1 & 0 & 1 & 2 & 3 \ \hlinef(xi)f\left(x_{i}\right) & 7-7 & 3-3 & 3-3 & 7-7 & 9 \end{tabular}..

Typos? Please submit corrections to this page on GitHub.