3.II.16B

Quantum Mechanics | Part IB, 2006

The expression ΔψA\Delta_{\psi} A denotes the uncertainty of a quantum mechanical observable AA in a state with normalised wavefunction ψ\psi. Prove that the Heisenberg uncertainty principle

(Δψx)(Δψp)2\left(\Delta_{\psi} x\right)\left(\Delta_{\psi} p\right) \geqslant \frac{\hbar}{2}

holds for all normalised wavefunctions ψ(x)\psi(x) of one spatial dimension.

[You may quote Schwarz's inequality without proof.]

A Gaussian wavepacket evolves so that at time tt its wavefunction is

ψ(x,t)=(2π)14(1+it)12exp(x24(1+it))\psi(x, t)=(2 \pi)^{-\frac{1}{4}}(1+i \hbar t)^{-\frac{1}{2}} \exp \left(-\frac{x^{2}}{4(1+i \hbar t)}\right)

Calculate the uncertainties Δψx\Delta_{\psi} x and Δψp\Delta_{\psi} p at each time tt, and hence verify explicitly that the uncertainty principle holds at each time tt.

[You may quote without proof the results that if Re(a)>0\operatorname{Re}(a)>0 then

exp(x2a)x2exp(x2a)dx=14(π2)12a3(Re(a))32\int_{-\infty}^{\infty} \exp \left(-\frac{x^{2}}{a^{*}}\right) x^{2} \exp \left(-\frac{x^{2}}{a}\right) d x=\frac{1}{4}\left(\frac{\pi}{2}\right)^{\frac{1}{2}} \frac{|a|^{3}}{(\operatorname{Re}(a))^{\frac{3}{2}}}

and

(ddxexp(x2a))(ddxexp(x2a))dx=(π2)12a(Re(a))32]\left.\int_{-\infty}^{\infty}\left(\frac{d}{d x} \exp \left(-\frac{x^{2}}{a^{*}}\right)\right)\left(\frac{d}{d x} \exp \left(-\frac{x^{2}}{a}\right)\right) d x=\left(\frac{\pi}{2}\right)^{\frac{1}{2}} \frac{|a|}{(\operatorname{Re}(a))^{\frac{3}{2}}} \cdot\right]

Typos? Please submit corrections to this page on GitHub.