3.II.15G

Methods | Part IB, 2006

(a) Find the Fourier sine series of the function

f(x)=xf(x)=x

for 0x10 \leqslant x \leqslant 1.

(b) The differential operator LL acting on yy is given by

L[y]=y+yL[y]=y^{\prime \prime}+y^{\prime}

Show that the eigenvalues λ\lambda in the eigenvalue problem

L[y]=λy,y(0)=y(1)=0L[y]=\lambda y, \quad y(0)=y(1)=0

are given by λ=n2π214,n=1,2,\lambda=-n^{2} \pi^{2}-\frac{1}{4}, \quad n=1,2, \ldots, and find the corresponding eigenfunctions yn(x)y_{n}(x).

By expressing the equation L[y]=λyL[y]=\lambda y in Sturm-Liouville form or otherwise, write down the orthogonality relation for the yny_{n}. Assuming the completeness of the eigenfunctions and using the result of part (a), find, in the form of a series, a function y(x)y(x) which satisfies

L[y]=xex/2L[y]=x e^{-x / 2}

and y(0)=y(1)=0y(0)=y(1)=0.

Typos? Please submit corrections to this page on GitHub.