3.I.6A

Methods | Part IB, 2006

If TijT_{i j} is a second rank tensor such that biTijcj=0b_{i} T_{i j} c_{j}=0 for every vector b\mathbf{b} and every vector c, show that Tij=0T_{i j}=0.

Let SS be a closed surface with outward normal n\mathbf{n} that encloses a three-dimensional region having volume VV. The position vector is x\mathbf{x}. Use the divergence theorem to find

S(bx)(cn)dS\int_{S}(\mathbf{b} \cdot \mathbf{x})(\mathbf{c} \cdot \mathbf{n}) d S

for constant vectors b\mathbf{b} and c\mathbf{c}. Hence find

SxinjdS\int_{S} x_{i} n_{j} d S

and deduce the values of

SxndS and Sx×ndS\int_{S} \mathbf{x} \cdot \mathbf{n} d S \text { and } \int_{S} \mathbf{x} \times \mathbf{n} d S

Typos? Please submit corrections to this page on GitHub.