2.II.15G

Methods | Part IB, 2006

Verify that y=exy=e^{-x} is a solution of the differential equation

(x+2)y+(x+1)yy=0,(x+2) y^{\prime \prime}+(x+1) y^{\prime}-y=0,

and find a second solution of the form ax+ba x+b.

Let LL be the operator

L[y]=y+(x+1)(x+2)y1(x+2)yL[y]=y^{\prime \prime}+\frac{(x+1)}{(x+2)} y^{\prime}-\frac{1}{(x+2)} y

on functions y(x)y(x) satisfying

y(0)=y(0) and limxy(x)=0.y^{\prime}(0)=y(0) \quad \text { and } \quad \lim _{x \rightarrow \infty} y(x)=0 .

The Green's function G(x,ξ)G(x, \xi) for LL satisfies

L[G]=δ(xξ)L[G]=\delta(x-\xi)

with ξ>0\xi>0. Show that

G(x,ξ)=(ξ+1)(ξ+2)eξxG(x, \xi)=-\frac{(\xi+1)}{(\xi+2)} e^{\xi-x}

for x>ξx>\xi, and find G(x,ξ)G(x, \xi) for x<ξx<\xi.

Hence or otherwise find the solution of

L[y]=(x+2)ex,L[y]=-(x+2) e^{-x},

for x0x \geqslant 0, with y(x)y(x) satisfying the boundary conditions above.

Typos? Please submit corrections to this page on GitHub.