4.II.15D

Complex Methods | Part IB, 2006

Denote by fgf * g the convolution of two functions, and by f^\widehat{f} the Fourier transform, i.e.,

[fg](x)=f(t)g(xt)dt,f^(λ)=f(x)eiλxdx[f * g](x)=\int_{-\infty}^{\infty} f(t) g(x-t) d t, \quad \widehat{f}(\lambda)=\int_{-\infty}^{\infty} f(x) e^{-i \lambda x} d x

(a) Show that, for suitable functions ff and gg, the Fourier transform F^\widehat{F}of the convolution F=fgF=f * g is given by F^=f^g^\widehat{F}=\widehat{f} \cdot \widehat{g}.

(b) Let

f1(x)={1x1/20 otherwise f_{1}(x)= \begin{cases}1 & |x| \leqslant 1 / 2 \\ 0 & \text { otherwise }\end{cases}

and let f2=f1f1f_{2}=f_{1} * f_{1} be the convolution of f1f_{1} with itself. Find the Fourier transforms of f1f_{1} and f2f_{2}, and, by applying Parseval's theorem, determine the value of the integral

(sinyy)4dy\int_{-\infty}^{\infty}\left(\frac{\sin y}{y}\right)^{4} d y

Typos? Please submit corrections to this page on GitHub.