2.II.14D

Complex Analysis or Complex Methods | Part IB, 2006

Let Ω\Omega be the region enclosed between the two circles C1C_{1} and C2C_{2}, where

C1={zC:zi=1},C2={zC:z2i=2}C_{1}=\{z \in \mathbf{C}:|z-i|=1\}, \quad C_{2}=\{z \in \mathbf{C}:|z-2 i|=2\}

Find a conformal mapping that maps Ω\Omega onto the unit disc.

[Hint: you may find it helpful first to map Ω\Omega to a strip in the complex plane. ]

Typos? Please submit corrections to this page on GitHub.