1.II.9H

Linear Algebra | Part IB, 2006

Let U,VU, V be finite-dimensional vector spaces, and let θ\theta be a linear map of UU into VV. Define the rank r(θ)r(\theta) and the nullity n(θ)n(\theta) of θ\theta, and prove that

r(θ)+n(θ)=dimUr(\theta)+n(\theta)=\operatorname{dim} U

Now let θ,ϕ\theta, \phi be endomorphisms of a vector space UU. Define the endomorphisms θ+ϕ\theta+\phi and θϕ\theta \phi, and prove that

r(θ+ϕ)r(θ)+r(ϕ)n(θϕ)n(θ)+n(ϕ).\begin{aligned} r(\theta+\phi) & \leqslant r(\theta)+r(\phi) \\ n(\theta \phi) & \leqslant n(\theta)+n(\phi) . \end{aligned}

Prove that equality holds in both inequalities if and only if θ+ϕ\theta+\phi is an isomorphism and θϕ\theta \phi is zero.

Typos? Please submit corrections to this page on GitHub.