Part IB, 2005, Paper 4
Part IB, 2005, Paper 4
Jump to course
4.I 3 B
commentLet be the vector space of continuous real-valued functions on . Show that the function
defines a norm on .
For , let . Is a convergent sequence in the space with this norm? Justify your answer.
4.II.13B
commentLet be a continuous function. Let be the maximum value of . Suppose there is a constant such that
for all and . Let . Show that there is a unique function such that
and
[Hint: First show that the differential equation with its initial condition is equivalent to the integral equation
4.I.4A
commentLet be a closed path, where all paths are assumed to be piecewise continuously differentiable, and let be a complex number not in the image of . Write down an expression for the winding number in terms of a contour integral. From this characterization of the winding number, prove the following properties:
(a) If and are closed paths not passing through zero, and if is defined by for all , then
(b) If is a closed path whose image is contained in , then .
(c) If and are closed paths and is a complex number, not in the image of either path, such that
for all , then .
[You may wish here to consider the path defined by .]
4.II.15F
commentDetermine the Fourier expansion of the function , where , in the two cases where is an integer and is a real non-integer.
Using the Parseval identity in the case , find an explicit expression for the sum
4.I.7H
commentFor a static current density show that we may choose the vector potential so that
For a loop , centred at the origin, carrying a current show that
[You may assume
and for fixed vectors
4.II.18E
commentA fluid of density occupies the region and a second fluid of density occupies the region . State the equations and boundary conditions that are satisfied by the corresponding velocity potentials and and pressures and when the system is perturbed so that the interface is at and the motion is irrotational.
Seek a set of linearised equations and boundary conditions when the disturbances are proportional to , and derive the dispersion relation
where is the gravitational acceleration.
4.II.12A
commentGiven a parametrized smooth embedded surface , where is an open subset of with coordinates , and a point , define what is meant by the tangent space at , the unit normal at , and the first fundamental form
[You need not show that your definitions are independent of the parametrization.]
The second fundamental form is defined to be
where and . Prove that the partial derivatives of (considered as a vector-valued function of ) are of the form , , where
Explain briefly the significance of the determinant .
4.I.2C
commentState Eisenstein's irreducibility criterion. Let be an integer . Prove that is irreducible in if and only if is a prime number.
4.II.11C
commentLet be the ring of Gaussian integers , where , which you may assume to be a unique factorization domain. Prove that every prime element of divides precisely one positive prime number in . List, without proof, the prime elements of , up to associates.
Let be a prime number in . Prove that has cardinality . Prove that is not a field. If , show that is a field. If , decide whether is a field or not, justifying your answer.
4.I.1B
commentDefine what it means for an complex matrix to be unitary or Hermitian. Show that every eigenvalue of a Hermitian matrix is real. Show that every eigenvalue of a unitary matrix has absolute value 1 .
Show that two eigenvectors of a Hermitian matrix that correspond to different eigenvalues are orthogonal, using the standard inner product on .
4.II.10B
comment(i) Let be a finite-dimensional real vector space with an inner product. Let be a basis for . Prove by an explicit construction that there is an orthonormal basis for such that the span of is equal to the span of for every .
(ii) For any real number , consider the quadratic form
on . For which values of is nondegenerate? When is nondegenerate, compute its signature in terms of .
4.I.9D
commentProve that the simple symmetric random walk in three dimensions is transient.
[You may wish to recall Stirling's formula: ]
4.I.5H
commentShow how the general solution of the wave equation for ,
can be expressed as
Show that the boundary conditions relate the functions and and require them to be periodic with period .
Show that, with these boundary conditions,
and that this is a constant independent of .
4.II.16H
commentDefine an isotropic tensor and show that are isotropic tensors.
For a unit vector and the area element on the unit sphere show that
is an isotropic tensor for any . Hence show that
for some which should be determined.
Explain why
where is the region inside the unit sphere.
[The general isotropic tensor of rank 4 has the form ]
4.II.14A
commentLet be a metric space, and a non-empty closed subset of . For , set
Prove that is a continuous function of , and that it is strictly positive for .
A topological space is called normal if for any pair of disjoint closed subsets , there exist disjoint open subsets . By considering the function
or otherwise, deduce that any metric space is normal.
Suppose now that is a normal topological space, and that are disjoint closed subsets in . Prove that there exist open subsets , whose closures are disjoint. In the case when with the standard metric topology, and , find explicit open subsets with the above property.
4.I.8F
commentDefine Gaussian quadrature.
Evaluate the coefficients of the Gaussian quadrature of the integral
which uses two function evaluations.
4.II.20D
commentDescribe the Ford-Fulkerson algorithm for finding a maximal flow from a source to a sink in a directed network with capacity constraints on the arcs. Explain why the algorithm terminates at an optimal flow when the initial flow and the capacity constraints are rational.
Illustrate the algorithm by applying it to the problem of finding a maximal flow from to in the network below.
4.I.6G
commentDefine the commutator of two operators, and . In three dimensions angular momentum is defined by a vector operator with components
Show that and use this, together with permutations, to show that , where denotes any of the directions .
At a given time the wave function of a particle is given by
Show that this is an eigenstate of with eigenvalue equal to .
4.II.17G
commentObtain the Lorentz transformations that relate the coordinates of an event measured in one inertial frame to those in another inertial frame moving with velocity along the axis. Take care to state the assumptions that lead to your result.
A star is at rest in a three-dimensional coordinate frame that is moving at constant velocity along the axis of a second coordinate frame . The star emits light of frequency , which may considered to be a beam of photons. A light ray from the star to the origin in is a straight line that makes an angle with the axis. Write down the components of the four-momentum of a photon in this light ray.
The star is seen by an observer at rest at the origin of at time , when the origins of the coordinate frames and coincide. The light that reaches the observer moves along a line through the origin that makes an angle to the axis and has frequency . Make use of the Lorentz transformations between the four-momenta of a photon in these two frames to determine the relation
where is the observed wavelength of the photon and is the wavelength in the star's rest frame.
Comment on the form of this result in the special cases with and .
[You may assume that the energy of a photon of frequency momentum is a three-vector of magnitude
4.II.19D
commentLet be observations satisfying
where are independent random variables each with the distribution. Here are known but and are unknown.
(i) Determine the maximum-likelihood estimates of .
(ii) Find the distribution of .
(iii) By showing that and are independent, or otherwise, determine the joint distribution of and .
(iv) Explain carefully how you would test the hypothesis against .