Mathematics Tripos Papers

  • Part IA
  • Part IB
  • Part II
  • FAQ

4.I.9D

Markov Chains | Part IB, 2005

Prove that the simple symmetric random walk in three dimensions is transient.

[You may wish to recall Stirling's formula: n!∼(2π)12nn+12e−n.n ! \sim(2 \pi)^{\frac{1}{2}} n^{n+\frac{1}{2}} e^{-n} .n!∼(2π)21​nn+21​e−n. ]

Typos? Please submit corrections to this page on GitHub.