3.II.20D

Optimization | Part IB, 2005

Consider the linear programming problem

maximize4x1+x29x3 subject to x211x3113x1+2x27x3169x12x2+10x329,xi0,i=1,2,3.\begin{aligned} \operatorname{maximize} \quad 4 x_{1}+x_{2}-9 x_{3} & \\ \text { subject to } \quad x_{2}-11 x_{3} & \leqslant 11 \\ -3 x_{1}+2 x_{2}-7 x_{3} & \leqslant 16 \\ 9 x_{1}-2 x_{2}+10 x_{3} & \leqslant 29, \quad x_{i} \geqslant 0, \quad i=1,2,3 . \end{aligned}

(a) After adding slack variables z1,z2z_{1}, z_{2} and z3z_{3} and performing one pivot in the simplex algorithm the following tableau is obtained:

\begin{tabular}{c|rrrrrr|r} & x1x_{1} & x2x_{2} & x3x_{3} & z1z_{1} & z2z_{2} & z3z_{3} & \ \hlinez1z_{1} & 0 & 1 & 11-11 & 1 & 0 & 0 & 11 \ z2z_{2} & 0 & 43\frac{4}{3} & 113-\frac{11}{3} & 0 & 1 & 13\frac{1}{3} & 773\frac{77}{3} \ x1x_{1} & 1 & 29-\frac{2}{9} & 109\frac{10}{9} & 0 & 0 & 19\frac{1}{9} & 299\frac{29}{9} \ \hline Payoff & 0 & 179\frac{17}{9} & 1219-\frac{121}{9} & 0 & 0 & 49-\frac{4}{9} & 1169-\frac{116}{9} \end{tabular}

Complete the solution of the problem using the simplex algorithm.

(b) Obtain the dual problem and identify its optimal solution from the optimal tableau in (a).

(c) Suppose that the right-hand sides in the constraints to the original problem are changed from (11,16,29)(11,16,29) to (11+ϵ1,16+ϵ2,29+ϵ3)\left(11+\epsilon_{1}, 16+\epsilon_{2}, 29+\epsilon_{3}\right). Give necessary and sufficient conditions on (ϵ1,ϵ2,ϵ3)\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right) which ensure that the optimal solution to the dual obtained in (b) remains optimal for the dual for the amended problem.

Typos? Please submit corrections to this page on GitHub.