1.II.17E

Fluid Dynamics | Part IB, 2005

State Bernoulli's expression for the pressure in an unsteady potential flow with conservative force χ-\nabla \chi.

A spherical bubble in an incompressible liquid of density ρ\rho has radius R(t)R(t). If the pressure far from the bubble is pp_{\infty} and inside the bubble is pbp_{b}, show that

pbp=ρ(32R˙2+RR¨)p_{b}-p_{\infty}=\rho\left(\frac{3}{2} \dot{R}^{2}+R \ddot{R}\right)

Calculate the kinetic energy K(t)K(t) in the flow outside the bubble, and hence show that

K˙=(pbp)V˙\dot{K}=\left(p_{b}-p_{\infty}\right) \dot{V}

where V(t)V(t) is the volume of the bubble.

If pb(t)=pV0/Vp_{b}(t)=p_{\infty} V_{0} / V, show that

K=K0+p(V0lnVV0V+V0)K=K_{0}+p_{\infty}\left(V_{0} \ln \frac{V}{V_{0}}-V+V_{0}\right)

where K=K0K=K_{0} when V=V0V=V_{0}.

Typos? Please submit corrections to this page on GitHub.