1.II.12A
Suppose that and are metric spaces. Show that the definition
defines a metric on the product , under which the projection map is continuous.
If is compact, show that every sequence in has a subsequence converging to a point of . Deduce that the projection map then has the property that, for any closed subset , the image is closed in . Give an example to show that this fails if is not assumed compact.
Typos? Please submit corrections to this page on GitHub.