2.II.13B
Use the standard metric on in this question.
(i) Let be a nonempty closed subset of and a point in . Show that there is a point which minimizes the distance to , in the sense that for all .
(ii) Suppose that the set in part (i) is convex, meaning that contains the line segment between any two of its points. Show that point described in part (i) is unique.
Typos? Please submit corrections to this page on GitHub.