2.I.1C

Linear Algebra | Part IB, 2005

Let Ω\Omega be the set of all 2×22 \times 2 matrices of the form α=aI+bJ+cK+dL\alpha=a I+b J+c K+d L, where a,b,c,da, b, c, d are in R\mathbf{R}, and

I=(1001),J=(i00i),K=(0110),L=(0ii0)(i2=1).I=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), J=\left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array}\right), K=\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right), L=\left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right) \quad\left(i^{2}=-1\right) .

Prove that Ω\Omega is closed under multiplication and determine its dimension as a vector space over R\mathbf{R}. Prove that

(aI+bJ+cK+dL)(aIbJcKdL)=(a2+b2+c2+d2)I(a I+b J+c K+d L)(a I-b J-c K-d L)=\left(a^{2}+b^{2}+c^{2}+d^{2}\right) I

and deduce that each non-zero element of Ω\Omega is invertible.

Typos? Please submit corrections to this page on GitHub.