1.II.9C

Linear Algebra | Part IB, 2005

Let VV be a finite dimensional vector space over R\mathbf{R}, and VV^{*} be the dual space of VV.

If WW is a subspace of VV, we define the subspace α(W)\alpha(W) of VV^{*} by

α(W)={fV:f(w)=0 for all w in W}\alpha(W)=\left\{f \in V^{*}: f(w)=0 \text { for all } w \text { in } W\right\}

Prove that dim(α(W))=dim(V)dim(W)\operatorname{dim}(\alpha(W))=\operatorname{dim}(V)-\operatorname{dim}(W). Deduce that, if A=(aij)A=\left(a_{i j}\right) is any real m×nm \times n-matrix of rank rr, the equations

j=1naijxj=0(i=1,,m)\sum_{j=1}^{n} a_{i j} x_{j}=0 \quad(i=1, \ldots, m)

have nrn-r linearly independent solutions in Rn\mathbf{R}^{n}.

Typos? Please submit corrections to this page on GitHub.