1.I.7B

Complex Methods | Part IB, 2003

Let u(x,y)u(x, y) and v(x,y)v(x, y) be a pair of conjugate harmonic functions in a domain DD.

Prove that

U(x,y)=e2uvcos(u2v2) and V(x,y)=e2uvsin(u2v2)U(x, y)=e^{-2 u v} \cos \left(u^{2}-v^{2}\right) \quad \text { and } \quad V(x, y)=e^{-2 u v} \sin \left(u^{2}-v^{2}\right)

also form a pair of conjugate harmonic functions in DD.

Typos? Please submit corrections to this page on GitHub.