$3 . \mathrm{I} . 5 \mathrm{H} \quad$

Two players A and B play a zero-sum game with the pay-off matrix

\begin{tabular}{r|rrr} & $B_{1}$ & $B_{2}$ & $B_{3}$ \ \hline$A_{1}$ & 4 & $-2$ & $-5$ \ $A_{2}$ & $-2$ & 4 & 3 \ $A_{3}$ & $-3$ & 6 & 2 \ $A_{4}$ & 3 & $-8$ & $-6$ \end{tabular}

Here, the $(i, j)$ entry of the matrix indicates the pay-off to player A if he chooses move $A_{i}$ and player $\mathrm{B}$ chooses move $B_{j}$. Show that the game can be reduced to a zero-sum game with $2 \times 2$ pay-off matrix.

Determine the value of the game and the optimal strategy for player A.

*Typos? Please submit corrections to this page on GitHub.*