Part IA, 2021, Paper 4
Part IA, 2021, Paper 4
Jump to course
Paper 4, Section I, C
commentA rigid body composed of particles with positions , and masses , rotates about the -axis with constant angular speed . Show that the body's kinetic energy is , where you should give an expression for the moment of inertia in terms of the particle masses and positions.
Consider a solid cuboid of uniform density, mass , and dimensions . Choose coordinate axes so that the cuboid is described by the points with , and . In terms of , , and , find the cuboid's moment of inertia for rotations about the -axis.
Paper 4, Section I, C
commentA trolley travels with initial speed along a frictionless, horizontal, linear track. It slows down by ejecting gas in the direction of motion. The gas is emitted at a constant mass ejection rate and with constant speed relative to the trolley. The trolley and its supply of gas initially have a combined mass of . How much time is spent ejecting gas before the trolley stops? [Assume that the trolley carries sufficient gas.]
Paper 4, Section II, 10C
comment(a) A mass is acted upon by a central force
where is a positive constant and is the displacement of the mass from the origin. Show that the angular momentum and energy of the mass are conserved.
(b) Working in plane polar coordinates , or otherwise, show that the distance between the mass and the origin obeys the following differential equation
where is the angular momentum per unit mass.
(c) A satellite is initially in a circular orbit of radius and experiences the force described above. At and time , the satellite emits a short rocket burst putting it on an elliptical orbit with its closest distance to the centre and farthest distance . When and the time is , the satellite reaches the farthest distance and a second short rocket burst puts the rocket on a circular orbit of radius . (See figure.) [Assume that the duration of the rocket bursts is negligible.]
(i) Show that the satellite's angular momentum per unit mass while in the elliptical orbit is
where is a number you should determine.
(ii) What is the change in speed as a result of the rocket burst at time ? And what is the change in speed at ?
(iii) Given that the elliptical orbit can be described by
where is the eccentricity of the orbit, find in terms of , and . [Hint: The area of an ellipse is equal to , where and b are its semi-major and semi-minor axes; these are related to the eccentricity by
Paper 4, Section II, C
commentWrite down the expression for the momentum of a particle of rest mass , moving with velocity where is near the speed of light . Write down the corresponding 4-momentum.
Such a particle experiences a force . Why is the following expression for the particle's acceleration,
not generally correct? Show that the force can be written as follows
Invert this expression to find the particle's acceleration as the sum of two vectors, one parallel to and one parallel to .
A particle with rest mass and charge is in the presence of a constant electric field which exerts a force on the particle. If the particle is at rest at , its motion will be in the direction of for . Determine the particle's speed for . How does the velocity behave as ?
[Hint: You may find that trigonometric substitution is helpful in evaluating an integral.]
Paper 4, Section II, C
commentConsider an inertial frame of reference and a frame of reference which is rotating with constant angular velocity relative to . Assume that the two frames have a common origin .
Let be any vector. Explain why the derivative of in frame is related to its derivative in by the following equation
[Hint: It may be useful to use Cartesian basis vectors in both frames.]
Let be the position vector of a particle, measured from . Derive the expression relating the particle's acceleration as observed in , to the acceleration observed in , written in terms of and
A small bead of mass is threaded on a smooth, rigid, circular wire of radius . At any given instant, the wire hangs in a vertical plane with respect to a downward gravitational acceleration . The wire is rotating with constant angular velocity about its vertical diameter. Let be the angle between the downward vertical and the radial line going from the centre of the hoop to the bead.
(i) Show that satisfies the following equation of motion
(ii) Find any equilibrium angles and determine their stability.
(iii) Find the force of the wire on the bead as a function of and .
Paper 4, Section II, C
commentA particle of mass follows a one-dimensional trajectory in the presence of a variable force . Write down an expression for the work done by this force as the particle moves from to . Assuming that this is the only force acting on the particle, show that the work done by the force is equal to the change in the particle's kinetic energy.
What does it mean if a force is said to be conservative?
A particle moves in a force field given by
where and are positive constants. The particle starts at the origin with initial velocity . Show that, as the particle's position increases from to larger , the particle's velocity at position is given by
where you should determine . What determines whether the particle will escape to infinity or oscillate about the origin? Sketch versus for each of these cases, carefully identifying any significant velocities or positions.
In the case of oscillatory motion, find the period of oscillation in terms of , and . [Hint: You may use the fact that
for .]
Paper 4 , Section I, E
commentConsider functions and . Which of the following statements are always true, and which can be false? Give proofs or counterexamples as appropriate.
(i) If is surjective then is surjective.
(ii) If is injective then is injective.
(iii) If is injective then is injective.
If and with , and is the identity on , then how many possibilities are there for the pair of functions and ?
Paper 4, Section I,
commentThe Fibonacci numbers are defined by . Let be the ratio of successive Fibonacci numbers.
(i) Show that . Hence prove by induction that
for all . Deduce that the sequence is monotonically decreasing.
(ii) Prove that
for all . Hence show that as .
(iii) Explain without detailed justification why the sequence has a limit.
Paper 4, Section II,
comment(a) (i) By considering Euclid's algorithm, show that the highest common factor of two positive integers and can be written in the form for suitable integers and . Find an integer solution of
Is your solution unique?
(ii) Suppose that and are coprime. Show that the simultaneous congruences
have the same set of solutions as for some . Hence solve (i.e. find all solutions of) the simultaneous congruences
(b) State the inclusion-exclusion principle.
For integers , denote by the number of ordered r-tuples of integers satisfying for and such that the greatest common divisor of is 1 . Show that
where the product is over all prime numbers dividing .
Paper 4, Section II,
comment(a) Prove that every real number can be written in the form where is a strictly increasing sequence of positive integers.
Are such expressions unique?
(b) Let be a root of , where . Suppose that has no rational roots, except possibly .
(i) Show that if then
where is a constant depending only on .
(ii) Deduce that if with and then
(c) Prove that is transcendental.
(d) Let and be transcendental numbers. What of the following statements are always true and which can be false? Briefly justify your answers.
(i) is transcendental.
(ii) is transcendental for every .
Paper 4, Section II, 8E
comment(a) Prove that a countable union of countable sets is countable.
(b) (i) Show that the set of all functions is uncountable.
(ii) Determine the countability or otherwise of each of the two sets
Justify your answers.
(c) A permutation of the natural numbers is a mapping that is bijective. Determine the countability or otherwise of each of the two sets and of permutations, justifying your answers:
(i) is the set of all permutations of such that for all sufficiently large .
(ii) is the set all permutations of such that
for each .
Paper 4, Section II, E
comment(a) Let be the set of all functions . Define by
(i) Define the binomial coefficient for . Setting when , prove from your definition that if then .
(ii) Show that if is integer-valued and , then
for some integers .
(b) State the binomial theorem. Show that