# Paper 1, Section II, C

Using the standard formula relating products of the Levi-Civita symbol $\epsilon_{i j k}$ to products of the Kronecker $\delta_{i j}$, prove

$\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$

Define the scalar triple product $[\mathbf{a}, \mathbf{b}, \mathbf{c}]$ of three vectors $\mathbf{a}, \mathbf{b}$, and $\mathbf{c}$ in $\mathbb{R}^{3}$ in terms of the dot and cross product. Show that

$[\mathbf{a} \times \mathbf{b}, \mathbf{b} \times \mathbf{c}, \mathbf{c} \times \mathbf{a}]=[\mathbf{a}, \mathbf{b}, \mathbf{c}]^{2}$

Given a basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ for $\mathbb{R}^{3}$ which is not necessarily orthonormal, let

$\mathbf{e}_{1}^{\prime}=\frac{\mathbf{e}_{2} \times \mathbf{e}_{3}}{\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right]}, \quad \mathbf{e}_{2}^{\prime}=\frac{\mathbf{e}_{3} \times \mathbf{e}_{1}}{\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right]}, \quad \mathbf{e}_{3}^{\prime}=\frac{\mathbf{e}_{1} \times \mathbf{e}_{2}}{\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right]}$

Show that $\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \mathbf{e}_{3}^{\prime}$ is also a basis for $\mathbb{R}^{3}$. [You may assume that three linearly independent vectors in $\mathbb{R}^{3}$ form a basis.]

The vectors $\mathbf{e}_{1}^{\prime \prime}, \mathbf{e}_{2}^{\prime \prime}, \mathbf{e}_{3}^{\prime \prime}$ are constructed from $\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \mathbf{e}_{3}^{\prime}$ in the same way that $\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}$, $\mathbf{e}_{3}^{\prime}$ are constructed from $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$. Show that

$\mathbf{e}_{1}^{\prime \prime}=\mathbf{e}_{1}, \quad \mathbf{e}_{2}^{\prime \prime}=\mathbf{e}_{2}, \quad \mathbf{e}_{3}^{\prime \prime}=\mathbf{e}_{3}$

An infinite lattice consists of all points with position vectors given by

$\mathbf{R}=n_{1} \mathbf{e}_{1}+n_{2} \mathbf{e}_{2}+n_{3} \mathbf{e}_{3} \text { with } n_{1}, n_{2}, n_{3} \in \mathbb{Z}$

Find all points with position vectors $\mathbf{K}$ such that $\mathbf{K} \cdot \mathbf{R}$ is an integer for all integers $n_{1}$, $n_{2}, n_{3}$.