Part IA, 2019, Paper 3
Part IA, 2019, Paper 3
Jump to course
Paper 3, Section , D
commentWhat is the orthogonal group ? What is the special orthogonal group
Show that every element of has an eigenvector with eigenvalue
Is it true that every element of is either a rotation or a reflection? Justify your answer.
Paper 3, Section I, D
commentProve that two elements of are conjugate if and only if they have the same cycle type.
Describe a condition on the centraliser (in ) of a permutation that ensures the conjugacy class of in is the same as the conjugacy class of in . Justify your answer.
How many distinct conjugacy classes are there in ?
Paper 3, Section II, D
commentLet be the group of Möbius transformations of and let be the group of all complex matrices of determinant 1 .
Show that the map given by
is a surjective homomorphism. Find its kernel.
Show that any not equal to the identity is conjugate to a Möbius map where either with or . [You may use results about matrices in as long as they are clearly stated.]
Show that any non-identity Möbius map has one or two fixed points. Also show that if is a Möbius map with just one fixed point then as for any . [You may assume that Möbius maps are continuous.]
Paper 3, Section II, D
commentState and prove the first isomorphism theorem. [You may assume that kernels of homomorphisms are normal subgroups and images are subgroups.]
Let be a group with subgroup and normal subgroup . Prove that is a subgroup of and is a normal subgroup of . Further, show that is a normal subgroup of .
Prove that is isomorphic to .
If and are both normal subgroups of must be a normal subgroup of ?
If and are subgroups of , but not normal subgroups, must be a subgroup of ?
Justify your answers.
Paper 3, Section II, D
commentState and prove Lagrange's Theorem.
Hence show that if is a finite group and then the order of divides the order of .
How many elements are there of order 3 in the following groups? Justify your answers.
(a) , where denotes the cyclic group of order .
(b) the dihedral group of order .
(c) the symmetric group of degree 7 .
(d) the alternating group of degree 7 .
Paper 3, Section II, D
commentLet and be subgroups of a group satisfying the following two properties.
(i) All elements of can be written in the form for some and some .
(ii) .
Prove that and are normal subgroups of if and only if all elements of commute with all elements of .
State and prove Cauchy's Theorem.
Let and be distinct primes. Prove that an abelian group of order is isomorphic to . Is it true that all abelian groups of order are isomorphic to ?
Paper 3, Section I, B
commentLet
Show that is an exact differential, clearly stating any criteria that you use.
Show that for any path between and
Paper 3, Section I, B
commentApply the divergence theorem to the vector field where is an arbitrary constant vector and is a scalar field, to show that
where is a volume bounded by the surface and is the outward pointing surface element.
Verify that this result holds when and is the spherical volume . [You may use the result that , where and are the usual angular coordinates in spherical polars and the components of are with respect to standard Cartesian axes.]
Paper 3, Section II, B
comment(a) The function satisfies in the volume and on , the surface bounding .
Show that everywhere in .
The function satisfies in and is specified on . Show that for all functions such that on
Hence show that
(b) The function satisfies in the spherical region , with on . The function is spherically symmetric, i.e. .
Suppose that the equation and boundary conditions are satisfied by a spherically symmetric function . Show that
Hence find the function when is given by , with constant.
Explain how the results obtained in part (a) of the question imply that is the only solution of which satisfies the specified boundary condition on .
Use your solution and the results obtained in part (a) of the question to show that, for any function such that on and on ,
where is the region .
Paper 3, Section II, B
commentShow that for a vector field
Hence find an , with , such that . [Hint: Note that is not defined uniquely. Choose your expression for to be as simple as possible.
Now consider the cone . Let be the curved part of the surface of the cone and be the flat part of the surface of the cone .
Using the variables and as used in cylindrical polars to describe points on , give an expression for the surface element in terms of and .
Evaluate .
What does the divergence theorem predict about the two surface integrals and where in each case the vector is taken outwards from the cone?
What does Stokes theorem predict about the integrals and (defined as in the previous paragraph) and the line integral where is the circle and the integral is taken in the anticlockwise sense, looking from the positive direction?
Evaluate and , making your method clear and verify that each of these predictions holds.
Paper 3, Section II, B
commentFor a given set of coordinate axes the components of a 2 nd rank tensor are given by .
(a) Show that if is an eigenvalue of the matrix with elements then it is also an eigenvalue of the matrix of the components of in any other coordinate frame.
Show that if is a symmetric tensor then the multiplicity of the eigenvalues of the matrix of components of is independent of coordinate frame.
A symmetric tensor in three dimensions has eigenvalues , with .
Show that the components of can be written in the form
where are the components of a unit vector.
(b) The tensor is defined by
where is the surface of the unit sphere, is the position vector of a point on , and is a constant.
Deduce, with brief reasoning, that the components of can be written in the form (1) with . [You may quote any results derived in part (a).]
Using suitable spherical polar coordinates evaluate and .
Explain how to deduce the values of and from and . [You do not need to write out the detailed formulae for these quantities.]
Paper 3, Section II, B
commentDefine the Jacobian, , of the one-to-one transformation
Give a careful explanation of the result
where
and the region maps under the transformation to the region .
Consider the region defined by
and
where and are positive constants.
Let be the intersection of with the plane . Write down the conditions for to be non-empty. Sketch the geometry of in , clearly specifying the curves that define its boundaries and points that correspond to minimum and maximum values of and of on the boundaries.
Use a suitable change of variables to evaluate the volume of the region , clearly explaining the steps in your calculation.