Part IA, 2016, Paper 2
Part IA, 2016, Paper 2
Jump to course
Paper 2, Section , A
comment(a) For each non-negative integer and positive constant , let
By differentiating with respect to , find its value in terms of and .
(b) By making the change of variables , transform the differential equation
into a differential equation for , where .
Paper 2, Section I, A
comment(a) Find the solution of the differential equation
that is bounded as and satisfies when .
(b) Solve the difference equation
Show that if , the solution that is bounded as and satisfies is approximately .
(c) By setting , explain the relation between parts (a) and (b).
Paper 2, Section II,
comment(a) The function satisfies
(i) Define the Wronskian of two linearly independent solutions and . Derive a linear first-order differential equation satisfied by .
(ii) Suppose that is known. Use the Wronskian to write down a first-order differential equation for . Hence express in terms of and .
(b) Verify that is a solution of
where and are constants, provided that these constants satisfy certain conditions which you should determine.
Use the method that you described in part (a) to find a solution which is linearly independent of .
Paper 2, Section II, A
comment(a) Find and sketch the solution of
where is the Dirac delta function, subject to and .
(b) A bowl of soup, which Sam has just warmed up, cools down at a rate equal to the product of a constant and the difference between its temperature and the temperature of its surroundings. Initially the soup is at temperature , where .
(i) Write down and solve the differential equation satisfied by .
(ii) At time , when the temperature reaches half of its initial value, Sam quickly adds some hot water to the soup, so the temperature increases instantaneously by , where . Find and for .
(iii) Sketch for .
(iv) Sam wants the soup to be at temperature at time , where . What value of should Sam choose to achieve this? Give your answer in terms of , and .
Paper 2, Section II, A
comment(a) By considering eigenvectors, find the general solution of the equations
and show that it can be written in the form
where and are constants.
(b) For any square matrix , is defined by
Show that if has constant elements, the vector equation has a solution , where is a constant vector. Hence solve and show that your solution is consistent with the result of part (a).
Paper 2, Section II, A
commentThe function satisfies
What does it mean to say that the point is (i) an ordinary point and (ii) a regular singular point of this differential equation? Explain what is meant by the indicial equation at a regular singular point. What can be said about the nature of the solutions in the neighbourhood of a regular singular point in the different cases that arise according to the values of the roots of the indicial equation?
State the nature of the point of the equation
Set , where , and find the roots of the indicial equation.
(a) Show that one solution of with is
and find a linearly independent solution in the case when is not an integer.
(b) If is a positive integer, show that has a polynomial solution.
(c) What is the form of the general solution of in the case ? [You do not need to find the general solution explicitly.]
Paper 2, Section I,
commentDefine the moment-generating function of a random variable . Let be independent and identically distributed random variables with distribution , and let . For , show that
Paper 2, Section I, F
commentLet be independent random variables, all with uniform distribution on . What is the probability of the event ?
Paper 2, Section II, F
commentA random graph with nodes is drawn by placing an edge with probability between and for all distinct and , independently. A triangle is a set of three distinct nodes that are all connected: there are edges between and , between and and between and .
(a) Let be the number of triangles in this random graph. Compute the maximum value and the expectation of .
(b) State the Markov inequality. Show that if , for some , then when
(c) State the Chebyshev inequality. Show that if is such that when , then when
Paper 2, Section II, F
commentLet be a non-negative random variable such that is finite, and let .
(a) Show that
(b) Let and be random variables such that and are finite. State and prove the Cauchy-Schwarz inequality for these two variables.
(c) Show that
Paper 2, Section II, F
commentWe randomly place balls in bins independently and uniformly. For each with , let be the number of balls in bin .
(a) What is the distribution of ? For , are and independent?
(b) Let be the number of empty bins, the number of bins with two or more balls, and the number of bins with exactly one ball. What are the expectations of and ?
(c) Let , for an integer . What is ? What is the limit of when ?
(d) Instead, let , for an integer . What is ? What is the limit of when ?
Paper 2, Section II, F
commentFor any positive integer and positive real number , the Gamma distribution has density defined on by
For any positive integers and , the Beta distribution has density defined on by
Let and be independent random variables with respective distributions and . Show that the random variables and are independent and give their distributions.