Paper 1, Section II,
(a) Show that the equations
determine and uniquely if and only if .
Write the following system of equations
in matrix form . Use Gaussian elimination to solve the system for , and . State a relationship between the rank and the kernel of a matrix. What is the rank and what is the kernel of ?
For which values of , and is it possible to solve the above system for and ?
(b) Define a unitary matrix. Let be a real symmetric matrix, and let be the identity matrix. Show that for arbitrary , where . Find a similar expression for . Prove that is well-defined and is a unitary matrix.
Typos? Please submit corrections to this page on GitHub.