Paper 3, Section II,
State and prove the orbit-stabiliser theorem.
Let be a prime number, and be a finite group of order with . If is a non-trivial normal subgroup of , show that contains a non-trivial element.
If is a proper subgroup of , show that there is a such that .
[You may use Lagrange's theorem, provided you state it clearly.]
Typos? Please submit corrections to this page on GitHub.