Paper 1, Section II, 6C6 \mathrm{C}

Vectors and Matrices | Part IA, 2015

(i) Consider the map from R4\mathbb{R}^{4} to R3\mathbb{R}^{3} represented by the matrix

(α1112α02α211)\left(\begin{array}{rrrr} \alpha & 1 & 1 & -1 \\ 2 & -\alpha & 0 & -2 \\ -\alpha & 2 & 1 & 1 \end{array}\right)

where αR\alpha \in \mathbb{R}. Find the image and kernel of the map for each value of α\alpha.

(ii) Show that any linear map f:RnRf: \mathbb{R}^{n} \rightarrow \mathbb{R} may be written in the form f(x)=axf(\mathbf{x})=\mathbf{a} \cdot \mathbf{x} for some fixed vector aRn\mathbf{a} \in \mathbb{R}^{n}. Show further that a\mathbf{a} is uniquely determined by ff.

It is given that n=4n=4 and that the vectors

(1111),(2102),(1211)\left(\begin{array}{r} 1 \\ 1 \\ 1 \\ -1 \end{array}\right),\left(\begin{array}{r} 2 \\ -1 \\ 0 \\ -2 \end{array}\right),\left(\begin{array}{r} -1 \\ 2 \\ 1 \\ 1 \end{array}\right)

lie in the kernel of ff. Determine the set of possible values of a.

Typos? Please submit corrections to this page on GitHub.