# Paper 1, Section I, $2 \mathrm{C}$

Precisely one of the four matrices specified below is not orthogonal. Which is it?

Give a brief justification.

$\frac{1}{\sqrt{6}}\left(\begin{array}{rcc} 1 & -\sqrt{3} & \sqrt{2} \\ 1 & \sqrt{3} & \sqrt{2} \\ -2 & 0 & \sqrt{2} \end{array}\right) \quad \frac{1}{3}\left(\begin{array}{ccc} 1 & 2 & -2 \\ 2 & -2 & -1 \\ 2 & 1 & 2 \end{array}\right) \quad \frac{1}{\sqrt{6}}\left(\begin{array}{rrr} 1 & -2 & 1 \\ -\sqrt{6} & 0 & \sqrt{6} \\ 1 & 1 & 1 \end{array}\right) \quad \frac{1}{9}\left(\begin{array}{rrr} 7 & -4 & -4 \\ -4 & 1 & -8 \\ -4 & -8 & 1 \end{array}\right)$

Given that the four matrices represent transformations of $\mathbb{R}^{3}$ corresponding (in no particular order) to a rotation, a reflection, a combination of a rotation and a reflection, and none of these, identify each matrix. Explain your reasoning.

[Hint: For two of the matrices, $A$ and $B$ say, you may find it helpful to calculate $\operatorname{det}(A-I)$ and $\operatorname{det}(B-I)$, where $I$ is the identity matrix.]