# Paper 3, Section I, A

The smooth curve $\mathcal{C}$ in $\mathbb{R}^{3}$ is given in parametrised form by the function $\mathbf{x}(u)$. Let $s$ denote arc length measured along the curve.

(a) Express the tangent $\mathbf{t}$ in terms of the derivative $\mathbf{x}^{\prime}=d \mathbf{x} / d u$, and show that $d u / d s=\left|\mathbf{x}^{\prime}\right|^{-1}$.

(b) Find an expression for $d \mathbf{t} / d s$ in terms of derivatives of $\mathbf{x}$ with respect to $u$, and show that the curvature $\kappa$ is given by

$\kappa=\frac{\left|\mathbf{x}^{\prime} \times \mathbf{x}^{\prime \prime}\right|}{\left|\mathbf{x}^{\prime}\right|^{3}}$

[Hint: You may find the identity $\left(\mathbf{x}^{\prime} \cdot \mathbf{x}^{\prime \prime}\right) \mathbf{x}^{\prime}-\left(\mathbf{x}^{\prime} \cdot \mathbf{x}^{\prime}\right) \mathbf{x}^{\prime \prime}=\mathbf{x}^{\prime} \times\left(\mathbf{x}^{\prime} \times \mathbf{x}^{\prime \prime}\right)$ helpful.]

(c) For the curve

$\mathbf{x}(u)=\left(\begin{array}{c} u \cos u \\ u \sin u \\ 0 \end{array}\right)$

with $u \geqslant 0$, find the curvature as a function of $u$.