Paper 2, Section II, F

Probability | Part IA, 2015

Consider the function

ϕ(x)=12πex2/2,xR\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad x \in \mathbb{R}

Show that ϕ\phi defines a probability density function. If a random variable XX has probability density function ϕ\phi, find the moment generating function of XX, and find all moments E[Xk]E\left[X^{k}\right], kNk \in \mathbb{N}.

Now define

r(x)=P(X>x)ϕ(x)r(x)=\frac{P(X>x)}{\phi(x)}

Show that for every x>0x>0,

1x1x3<r(x)<1x\frac{1}{x}-\frac{1}{x^{3}}<r(x)<\frac{1}{x}

Typos? Please submit corrections to this page on GitHub.