Mathematics Tripos Papers

  • Part IA
  • Part IB
  • Part II
  • FAQ

Paper 4 , Section I, E

Numbers and Sets | Part IA, 2015

State the Chinese remainder theorem and Fermat's theorem. Prove that

p4≡1( mod 240)p^{4} \equiv 1 \quad(\bmod 240)p4≡1(mod240)

for any prime p>5p>5p>5.

Typos? Please submit corrections to this page on GitHub.