Paper 4, Section II, E
(i) State and prove the Fermat-Euler Theorem.
(ii) Let be an odd prime number, and an integer coprime to . Show that , and that if the congruence has a solution then .
(iii) By arranging the residue classes coprime to into pairs with , or otherwise, show that if the congruence has no solution then
(iv) Show that .
Typos? Please submit corrections to this page on GitHub.