Paper 4, Section II, E
What does it mean to say that the sequence of real numbers converges to the limit What does it mean to say that the series converges to ?
Let and be convergent series of positive real numbers. Suppose that is a sequence of positive real numbers such that for every , either or . Show that is convergent.
Show that is convergent, and that is divergent if .
Let be a sequence of positive real numbers such that is convergent. Show that is convergent. Determine (with proof or counterexample) whether or not the converse statement holds.
Typos? Please submit corrections to this page on GitHub.